{{'Search' | translate}}
 

Leica TCS SP8 STED STED Nanoscopes

STED Nanoscopes Leica TCS SP8 STED

公司名称: Leica Microsystems
产品编号: Leica TCS SP8 STED
Bio-protocol()
Company-protocol()
Other protocol()

Optical Clearing and Index Matching of Tissue Samples for High-resolution Fluorescence Imaging Using SeeDB2
Author:
Date:
2018-10-20
[Abstract]  Tissue clearing techniques are useful for large-scale three-dimensional fluorescence imaging of thick tissues. However, high-resolution imaging deep inside tissues has been challenging, as it is extremely sensitive to light scattering and spherical aberrations. Here, we present a water-based optical clearing and mounting media, SeeDB2, which is designed for high numerical aperture (NA) objective lenses with oil or glycerol immersion. Using quick and simple soaking procedures, the refractive indices of samples can be matched either to that of immersion oil (1.52) or glycerol (1.46), thus ... [摘要]  组织清除技术可用于厚组织的大规模三维荧光成像。然而,高分辨率成像深层组织一直是一个挑战,因为它对光散射和球面像差极为敏感。在这里,我们提出了一种水基光学清除和安装介质SeeDB2,它是专为高数值孔径(NA)物镜和油或甘油浸泡而设计的。使用快速简单的浸泡程序,样品的折射率可以与浸油(1.52)或甘油(1.46)相匹配,从而最大限度地减少光散射和球面像差。在清理和成像过程中,高度保留了良好的形态和各种荧光蛋白。我们的方法可用于使用共聚焦和超分辨率显微镜在突触分辨率下的神经元电路的三维荧光成像。 SeeDB2也可用作荧光蛋白超分辨率成像的封固介质。
【背景】生物组织以3D组织。此外,许多重要的细胞机器,例如,例如,神经元中的突触,是亚微米级的。因此,对用于亚微米级3D成像的方法的需求不断增加。串联电子显微镜技术(例如>,FIB-SEM或SBF-SEM)很有前景,但它们无法充分利用现代生命科学中可用的基因荧光标记工具。为了利用荧光显微镜促进3D成像,近年来已经开发了许多组织清除技术(Richardson和Lichtman,2015和2017)。它们专为大规模3D成像而设计,其中一些可用于全脑,甚至是固定样品的全身尺度荧光成像,结合共焦,双光子或光片显微镜。然而,其中许多尚未针对高分辨率成像进行全面优化。
在荧光显微镜中,横向分辨率( d >)给出如下:
d ...

Dissection and Staining of Mouse Brain Ventricular Wall for the Analysis of Ependymal Cell Cilia Organization
Author:
Date:
2016-03-20
[Abstract]  In the developing and mature central nervous system (CNS) the ventricular lumen is lined by the neuroepithelium and ependymal, respectively. These ventricular epithelia perform important functions related to the development, morphogenesis and physiology of the brain. In the mature CNS, ependyma constitutes a barrier between brain parenchyma and cerebro- spinal fluid (CSF). The most prominent feature of the apical surface of ependymal cells is the presence of multiple motile cilia that extend towards the ventricular lumen. The beating of cilia ensures the circulation of the CSF and its ... [摘要]  在发展中和成熟的中枢神经系统(CNS)中,心室腔分别由神经上皮和室管膜排列。这些心室上皮执行与脑的发育,形态发生和生理相关的重要功能。在成熟CNS中,室管膜构成脑实质和脑脊液(CSF)之间的屏障。室管膜细胞的顶面的最突出的特征是存在向心室腔延伸的多个运动性纤毛。纤毛的跳动确保CSF的循环,并且其损伤导致脑积水。对于有效的CSF流动,睫状细胞跳动必须在单个细胞水平和组织水平协调。这种协调是通过精确组织在室内平面内的纤毛定位来实现的。已经描述了关于室管膜细胞中纤毛的平面组织的两个主要特征(Mirzadeh等人,2010),并且它们都具有细胞和组织方面(Boutin等人 ,2014)。第一个,旋转极性,指睫毛跳动的方向。在细胞水平,所有纤毛在相同方向跳动(图1B,黑色箭头)。在组织水平,每个室管膜细胞协调其拍打的方向与相邻细胞的方向(图1C,灰色箭头)。第二个特征,翻译极性,对室管膜细胞是唯一的,是指簇中的纤毛聚集。在细胞水平,该簇相对于室管膜细胞的中心位移(图1B,红色箭头)。在组织水平,睫状簇的定位在相邻细胞之间协调(图1C)。在任一水平上改变任何这些极性都会损害CSF流动循环(Mirzadeh等人,2010; Boutin等人,2014; Guirao等人,/em,2010; Hirota等人,2010; ...

产品评论