{{'Search' | translate}}
 

Olympus IX70 Fluorescence Microscope

公司名称: Olympus
产品编号: IX70
Bio-protocol()
Company-protocol()
Other protocol()

Centromere Chromosome Orientation Fluorescent in situ Hybridization (Cen-CO-FISH) Detects Sister Chromatid Exchange at the Centromere in Human Cells
Author:
Date:
2018-04-05
[Abstract]  Human centromeres are composed of large tandem arrays of repetitive alpha satellite DNA, which are often sites of aberrant rearrangement in cancers (Mitelman et al., 1997; Padilla-Nash et al., 2001). To date, annotation of the human centromere repetitive sequences remains incomplete, greatly hindering in-depth functional studies of these regions essential for chromosome segregation. In order to monitor sister chromatid exchange happening at the centromere (C-SCE) due to recombination and mutagenic events, I have applied the Chromosome-Orientation Fluorescence in situ ... [摘要]  人类着丝粒由重复的α卫星DNA的大串联阵列组成,这些细胞通常是癌症中异常重排的位点(Mitelman等人,1997; Padilla-Nash等人 >,2001)。迄今为止,对人类着丝粒重复序列的注释仍然不完整,极大地妨碍了这些区域对染色体分离至关重要的深入功能研究。为了监测由于重组和诱变事件而在着丝粒(C-SCE)上发生姊妹染色单体交换,我将染色体定位荧光原位杂交(CO-FISH)技术应用于着丝粒( Cen-CO-FISH)在人类细胞中的表达。这种基于杂交的方法包括(1)通过单轮复制掺入核苷酸类似物,(2)新合成的DNA链的酶消化和(3)单链探针的后续杂交,在不存在变性步骤的情况下。所产生的信号允许基于DNA的5'-3'方向性差异地标记每个姊妹染色单体,并评估指示C-SCE的异常染色模式。应用于人类着丝粒的Cen-CO-FISH方法揭示,人类着丝粒确实在循环细胞中发生重组,导致C-SCE,并且在经历衰老的癌细胞系和原代细胞中着丝粒不稳定性增强(Giunta和Funabiki,2017)。在这里,我介绍了人类细胞中Cen-CO-FISH方法的制备,实验程序和数据采集的详细方案。它还包括该技术的概念性概述,以及代表性图像和评分准则的示例。 Cen-CO-FISH是促进着丝粒重复探索的有用工具。

【背景】人类基因组计划于2003年标记为完成,但它遗漏了超过10%的人类重复DNA(de ...

Phototaxis Assay for Chlamydomonas reinhardtii
Author:
Date:
2017-06-20
[Abstract]  Phototaxis is a behavior in which organisms move toward or away from the light source (positive or negative phototaxis, respectively). It is crucial for phototrophic microorganisms to inhabit under proper light conditions for phototaxis. The unicellular green alga Chlamydomonas reinhardtii rapidly changes its swimming direction upon light illumination, and thus is a nice model organism for phototaxis research. Here we show two methods to assay Chlamydomonas phototaxis; one is a quick, easy and qualitative analysis, so-called the dish assay; and the other is a quantitative ... [摘要]  光趋向性是一种生物朝向或远离光源(分别为正或负光趋势)移动的行为。 光合微生物在光照条件适宜的条件下居住是至关重要的。 单细胞藻类莱茵衣藻在光照下迅速改变其游泳方向,因此是光线研究的一个很好的模型生物。 我们在这里展示了两种测定衣藻感染的方法; 一个是快速,容易和定性的分析,所谓的盘测定; 另一个是定量单细胞分析
【背景】单细胞藻类莱茵衣藻被用作各种研究领域的示范生物,包括微生物光合作用,光合作用和睫毛/鞭毛运动(Hegemann and Berthold,2009)。衣藻细胞在其眼窝感觉到光,观察细胞器作为位于细胞赤道附近的橙色斑点。眼窝包含位于细胞膜中的光感受器蛋白质通道视紫质和富含类胡萝卜素的颗粒层,其作用于光反射器之后的通道视紫质。由于它们的相对位置,眼睛受到高度定向的光感受,细胞可以准确地检测光照的方向(Foster和Smyth,1980; Ueki等,2016)。在光接收时,两个鞭毛改变它们的跳动平衡,并且细胞改变其游泳方向朝向或远离光源。
衣原体光镜方向(或“符号”)由细胞还原氧化态调节,其受细胞代谢如光合作用和呼吸活动的影响(Wakabayashi等,2011)。因此,光照标记间接地反映了体内的这些活性。例如,显示快速光敏反应的突变体已被证明具有高的光合活性(Kim等,2016)。此外,为了调节鞭毛打击细胞的光动力转动,鞭毛动力蛋白应严格调节(Kamiya和Witman,1984; ...

A Co-culture Model for Determining the Target Specificity of the de novo Generated Retinal Ganglion Cells
Author:
Date:
2017-04-05
[Abstract]  In glaucoma, the output neurons of the retina, the retinal ganglion cells (RGCs), progressively degenerate, leading to irreversible blindness (Ahram et al., 2015). The ex vivo stem cell method to replace degenerated RGCs remains a potentially viable approach (Levin et al., 2004). However, the success of the approach depends upon the ability of the de novo generated RGCs to connect over the long distance with specific targets in the central visual pathway. Here, we describe a protocol to examine the target specificity of the de novo generated RGCs ... [摘要]  在青光眼中,视网膜的输出神经元,视网膜神经节细胞(RGC)逐渐退化,导致不可逆的失明(Ahram等人,2015)。 替代退化RGCs的离体干细胞方法仍然是潜在可行的方法(Levin等人,2004)。 然而,该方法的成功取决于生成RGC的远程连接与中心视觉通路中特定目标的能力。 在这里,我们描述了一种协议,用于使用共培养方法来检查产生RG的产生RGCs的靶特异性,其中RGCs神经突被允许在特异性(上丘(SC))和非特异性 (下丘,IC)构造目标。

青光眼是全球不可逆失明的最常见原因之一(Tham等人,2014)。其特征在于RGC的进行性退化,视网膜的主要输出神经元,其与大脑连接用于视觉感知。不幸的是,目前尚无治疗RGCs变性的治疗方法。无论是外科手术,药理学还是神经保护,管理方法都不能扭转退行性变化(Danesh-Meyer,2011)。鉴于这种棘手的情况,干细胞治疗已经成为替代死亡RGCs的潜在可行方法。这种方法的成功需要:1)功能性和非致瘤性RGC与多能干细胞的定向分化,以及2)产生RGC的新生靶标特异性。我们的实验室最近展示了一种化学定义的方法,通过重述发育机制(Teotia等人,2016),允许RGCs从胚胎干(ES)/诱导的多能干细胞(iPS)细胞中的定向分化。所得的RGC是稳定的,功能性的和非致瘤性的。然而,远离干细胞在青光眼RGC变性中的生物细胞的成功取决于它们的轴突在中心视觉途径中找到适当靶标的能力。移植后,RGC的轴突必须在视网膜内导航,作为视神经退出,决定在视交叉处交叉或不交叉,并达到建立视网膜连接的具体目标。我们已经证明ES ...

产品评论