{{'Search' | translate}}
 

Confocal microscope MicroTime 200

公司名称: PicoQuant
产品编号: MicroTime 200
Bio-protocol()
Company-protocol()
Other protocol()

Preparation of Cell-free Synthesized Proteins Selectively Double Labeled for Single-molecule FRET Studies
Author:
Date:
2018-06-20
[Abstract]  Single-molecule FRET (smFRET) is a powerful tool to investigate molecular structures and conformational changes of biological molecules. The technique requires protein samples that are site-specifically equipped with a pair of donor and acceptor fluorophores. Here, we present a detailed protocol for preparing double-labeled proteins for smFRET studies. The protocol describes two cell-free approaches to achieve a selective label scheme that allows the highest possible accuracy in inter‐dye distance determination. [摘要]  单分子FRET(smFRET)是研究生物分子的分子结构和构象变化的有力工具。 该技术需要蛋白质样品,该样品是特定位点配有一对供体和受体荧光团的。 在这里,我们提供了一个制备smFRET研究的双标记蛋白的详细方案。 该协议描述了两种无细胞方法来实现选择性标记方案,其允许在染料间距离确定中具有最高可能的准确性。

【背景】单分子FRET(smFRET)是结构生物学中最重要的工具之一,特别是用于分析蛋白质的结构和功能构象变化(Michalet等人,2006; Roy等人。,2008; Sustarsic和Kapanidis,2015)。然而,smFRET的广泛应用在许多情况下受限于合适的蛋白质样品的精细生产。这些蛋白质需要配备两个荧光团,位点特异性连接在蛋白质结构内的不同位置。

经典的基于细胞的蛋白质生产需要一系列耗时的步骤,可以通过使用无细胞蛋白质合成(CFPS)系统来克服,允许更快且直接地生产和选择适当的双标记蛋白质。此外,CFPS的另一个优点是由于几类蛋白质如蛋白酶或膜蛋白对活细胞或其他原因有毒,难以在细胞中表达,可以在CFPS系统中成功合成。最后,CFPS是专注于光谱技术如smFRET的实验室的理想工具,因为细胞培养不是必需的,并且不必考虑重组生物的安全规定。

尽管smFRET所需的样本量本质上很低,但迄今为止,在smFRET研究中,CFPS尚未被标准地用于生产样本。这主要是由于与基于细胞的系统相比蛋白质产量低得多,并且缺乏适当的无细胞方法,其允许适当量的双标记蛋白质的方便合成。然而,正如我们的小组所表明的那样,得益于更高效的正交标记方案(Sadoine ...

Reversible Cryo-arrests of Living Cells to Pause Molecular Movements for High-resolution Imaging
Author:
Date:
2017-04-20
[Abstract]  Fluorescence live-cell imaging by single molecule localization microscopy (SMLM) or fluorescence lifetime imaging microscopy (FLIM) in principle allows for the spatio-temporal observation of molecular patterns in individual, living cells. However, the dynamics of molecules within cells hamper their precise observation. We present here a detailed protocol for consecutive cycles of reversible cryo-arrest of living cells on a microscope that allows for a precise determination of the evolution of molecular patterns within individual living cells. The usefulness of this approach has been ... [摘要]  通过单分子定位显微镜(SMLM)或荧光寿命成像显微镜(FLIM)的荧光活细胞成像原理上允许在个体,活细胞中的分子模式的时空观察。然而,细胞内分子的动力学阻碍了它们的精确观察。我们在这里介绍一个详细的方案,用于显微镜上活细胞可逆冷冻停滞的连续循环,允许精确测定各个活细胞内分子模式的演变。通过观察受体酪氨酸激酶的配体诱导的聚集以及SMLM和FLIM的活性模式已经证明了该方法的有用性(Masip等人,2016)。

了解细胞中的分子过程,例如受体 - 酪氨酸激酶(RTK)的配体诱导反应需要精确的时空观察分子模式。由于细胞状态的差异,这种反应需要在个体细胞而不是细胞群体中进行监测(Snijder和Pelkmans,2011)。使用SMLM,各个分子可以以高精度进行定位(Betzig等人,2006)。这允许例如提取关于质膜中的RTK聚类的信息。互补地,共焦FLIM可以揭示分子如何在衍射受限体积元素内作为整体反应。这可以通过使用构象传感器揭示RTK与下游分子的相互作用模式,磷酸化模式以及活性模式(Offterdinger等人,2004; Sabet等人)。 ...

产品评论