{{'Search' | translate}}
 

Dewar for liquid nitrogen

公司名称: KGW-Isotherm
产品编号: 1021
Bio-protocol()
Company-protocol()
Other protocol()

Xenopus laevis Oocytes Preparation for in-Cell EPR Spectroscopy
Author:
Date:
2018-04-05
[Abstract]  One of the most exciting perspectives for studying bio-macromolecules comes from the emerging field of in-cell spectroscopy, which enables to determine the structure and dynamics of bio-macromolecules in the cell. In-cell electron paramagnetic resonance (EPR) spectroscopy in combination with micro-injection of bio-macromolecules into Xenopus laevis oocytes is ideally suited for this purpose. Xenopus laevis oocytes are a commonly used eukaryotic cell model in different fields of biology, such as cell- and development-biology. For in-cell EPR, the bio-macromolecules of ... [摘要]  研究生物大分子的最令人兴奋的观点之一来自于新兴的细胞内光谱学领域,它能够确定细胞中生物大分子的结构和动力学。细胞内电子顺磁共振(EPR)光谱结合将生物大分子微注射到非洲爪蟾卵母细胞中非常适合于此目的。非洲爪蟾卵母细胞是生物学不同领域常用的真核细胞模型,如细胞和发育生物学。对于细胞内EPR,感兴趣的生物大分子通过定点自旋标记显微注射到非洲爪蟾卵母细胞中。通过Nanoliter注射器将样品溶液填充到薄玻璃毛细管中,然后通过小心地穿刺薄膜将其微注射入非洲爪蟾卵母细胞的黑色动物部分。之后,取决于最终的细胞内EPR实验的种类,将三个或五个显微注射的非洲爪蟾卵母细胞装载到Q波段EPR样品管中,随后进行任选的休克冷冻(用于实验冷冻溶液)并且在期望的温育时间之后测量(在低温或生理温度下)。由于显微注射样品的细胞毒性作用和顺磁性自旋标记在还原性细胞环境中的稳定性,孵育时间受到限制。通过监测细胞形态和减少动力学来量化这两个方面。

【背景】电子顺磁共振(EPR)光谱学是用于表征顺磁系统的选择方法(Atherton,1993; Gerson等人,1994; Jeschke和Schweiger,2001)。反磁性生物大分子可以通过定点自旋标记(SDSL)进行EPR光谱学分析,通常使用氮氧化物作为自旋标记(Hubbell和Altenbach,1994; Feix和Klug,2002; ...

产品评论