{{'Search' | translate}}
 

Rotor

转子F-45-24-11

公司名称: Eppendorf
产品编号: F-45-24-11
Bio-protocol()
Company-protocol()
Other protocol()

Method for Multiplexing CRISPR/Cas9 in Saccharomyces cerevisiae Using Artificial Target DNA Sequences
Author:
Date:
2017-09-20
[Abstract]  Genome manipulation has become more accessible given the advent of the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) editing technology. The Cas9 endonuclease binds a single stranded (single guide) RNA (sgRNA) fragment that recruits the complex to a corresponding genomic target sequence where it induces a double stranded break. Eukaryotic repair systems allow for the introduction of exogenous DNA, repair of existing mutations, or deletion of endogenous gene products. Targeting of Cas9 to multiple genomic positions (termed ‘multiplexing’) is achieved by the expression of ... [摘要]  鉴于CRISPR(集群定期间隔短回归重复)编辑技术的出现,基因组操纵变得更加易于使用。 Cas9核酸内切酶将募集复合物的单链(单向导)RNA(sgRNA)片段结合到相应的基因组靶序列,引发双链断裂。真核修复系统允许引入外源DNA,修复现有突变或内源基因产物的缺失。通过在同一核内表达多个sgRNA来实现Cas9对多个基因组位置的定位(称为“多重”)。然而,CRISPR领域的持续关注是将Cas9意外地定位到基因组内的替代(“脱靶”)DNA位置。我们将安装的人造Cas9靶序列的使用(称为人造基因座上的Cas9复制)描述为允许(i)与单个sgRNA复用的酵母基因组中的用途; (ii)减少/消除可能的脱靶效应,以及(iii)精确控制预定目标序列的放置。
【背景】CRISPR(集群定期间隔回归重复)机制已经在原核生物中演变为具有很高精度编辑任何基因组的能力的原始适应性免疫系统(Jinek等,2012; Sorek等,2013)。这种生物技术需要使用来自化脓性链球菌(或othologous物种)的内切核酸酶(Cas9),单个RNA'引导'序列和外源供体DNA(如果需要)。仅在短短几年内,CRISPR / ...

Complex in vivo Ligation Using Homologous Recombination and High-efficiency Plasmid Rescue from Saccharomyces cerevisiae
Author:
Date:
2015-07-05
[Abstract]  The protocols presented here allow for the facile generation of a wide variety of complex multipart DNA constructs (tagged gene products, gene fusions, chimeric proteins, and other variants) using homologous recombination and in vivo ligation in budding yeast (Saccharomyces cerevisiae). This method is straightforward, efficient and cost-effective, and can be used both for vector creation and for subsequent one-step, high frequency integration into a chromosomal locus in yeast. The procedure utilizes PCR with extended oligonucleotide “tails” of homology between multiple ... [摘要]  这里提出的方案允许使用发芽酵母(酿酒酵母)中的同源重组和体内连接,容易地生成各种复杂的多部分DNA构建体(标记的基因产物,基因融合体,嵌合蛋白和其他变体)。该方法是直接,有效和成本有效的,并且可以用于载体创建和用于后续的一步,高频整合到酵母中的染色体位点。该方法利用PCR扩增多个片段之间的同源性的寡核苷酸“尾”,以允许在单次转化中重组酵母,随后用酵母高效质粒提取(用于转化为细菌)的方法。后者是对现有的酵母质粒提取方法的改进,其历史上已经是恢复所需构建体的限制步骤。我们描述了我们的技术的实用性和便利性,并提供了几个例子。
【背景】酿酒酵母中的同源重组(HR)早已被公认为在体内组装DNA片段的非常方便的方法(Szostak等,1983; Ma等,1987; Oldenburg等,1997)。鉴于酵母中人力资源的效率,它已经被利用了增加其效用,增强其多功能性并允许其应用于广泛的实验目标的方式。这种一般方法的改进包括使用体内连接作为定向诱变的平台(Muhlrad等人,1992),引入反选择以帮助质粒产生(Gunyuzlu等人,2001; Anderson和Haj-Ahmad,2003)和使体内组装适应于不能在酵母中繁殖的载体(Iizasa和Nagano,2006; ...

Individual-nucleotide-resolution UV Cross-linking and Immunoprecipitation (iCLIP) of UPF1
Author:
Date:
2014-04-05
[Abstract]  The fate of mRNA, in particular its stability, localization and rate of translation is regulated by RNA binding proteins assembling to messenger ribonucleoprotein (mRNP) complexes. To investigate the transcriptome-wide RNA binding sites of UPF1, the core factor of nonsense-mediated mRNA decay (NMD), we performed individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP) (Zund et al., 2013) followed by high-throughput sequencing. The presented protocol is optimized to investigate the RNA-binding sites of UPF1 and is based on previously described studies (Konig et ... [摘要]  mRNA的命运,特别是其稳定性,定位和翻译速率由装配到信使核糖核蛋白(mRNP)复合物的RNA结合蛋白调节。 为了研究无义介导的mRNA衰变(NMD)的核心因子UPF1的转录组范围的RNA结合位点,我们进行单个核苷酸分辨率的UV交联和免疫沉淀(iCLIP)(Zund等,/em>,2013),然后进行高通量测序。 优化所提出的方案以研究UPF1的RNA结合位点并且基于先前描述的研究(Konig等人,2010; Konig等人,2011; Hafner等人,2010)。 我们要感谢Mihaela Zavolan(瑞士巴塞尔瑞士生物信息学研究所)和Jernej Ule(英国剑桥的分子生物学医学研究委员会实验室)组织这些实验的技术支持。

产品评论