In vitro Nitrate Reductase Activity Assay from Arabidopsis Crude Extracts
|
Author:
Date:
2018-04-05
[Abstract] Nitrate reductase (NR) reduces the major plant nitrogen source, NO3-, into NO2-. NR activity can be measured by its final product, nitrite through its absorbance under optimized condition. Here, we present a detailed protocol for measuring relative enzyme activity of NR from Arabidopsis crude extracts. This protocol offers simple procedure and data analysis to compare NR activity of multiple samples.
[摘要] 硝酸还原酶(NR)将主要的植物氮源NO 3 N-2还原为NO 2 - 2。 NR活性可以通过其最终产物,亚硝酸盐在最佳条件下通过其吸光度来测量。 在这里,我们提供了一个详细的协议,用于测量来自拟南芥粗提物的NR的相对酶活性。 该协议提供简单的程序和数据分析来比较多个样品的NR活性。
【背景】氮是植物所需的主要营养素,主要以硝酸盐的形式吸收。硝酸还原酶是高等植物中首次同化氮的酶。植物硝酸还原酶的同型二聚体如下催化硝酸根的NAD(P)H依赖性还原为亚硝酸根:
NO <3> + NADH + H +→NO - + NAD + H 测量NR活性的方法可能是研究影响NR活性的生物因素的有力工具(Park等人,2011)。氮同化影响植物中氨基酸的含量,因此调节NR活性可用于提高某些作物的质量(Croy和Hageman,1970; Dalling和Loyn,1977; Ruan等人,1998) )。在该协议中,在优化的缓冲液条件下限制时间内亚硝酸盐浓度增加作为可比值获得。亚硫酸盐浓度通过Griess测定法通过其在540nm处的吸光度来测量。简言之,亚硝酸盐与磺胺酸形成重氮盐,然后N-(1-萘基)乙二胺二盐酸盐形成有色偶氮化合物。可以比较这些值以确定样品如何具有不同的NR活性。此外,通过简单的过程可以将这些数值转换为精确增加的亚硝酸盐浓度。 3> ...
|
|
Electron Tomography to Study the Three-dimensional Structure of Plasmodesmata in Plant Tissues–from High Pressure Freezing Preparation to Ultrathin Section Collection
|
Author:
Date:
2018-01-05
[Abstract] Plasmodesmata (PD) are nanometric (~20 nm wide) membrane lined pores encased in the cell walls of the adjacent plant cells. They allow the cells to exchange all types of molecules ranging from nutrients like sugar, hormones, to RNAs and various proteins. Unfortunately, they are also hijacked by phyto-viruses, enabling them to spread from cell-to-cell and then systematically throughout the whole plant. Their central position in plant biology makes it crucial to understand their physiology and especially link their function to their structure. Over the past 50 years, electron microscopists have ...
[摘要] Plasmodesmata(PD)是包裹在相邻植物细胞的细胞壁中的纳米(〜20nm宽)膜衬里的孔。它们允许细胞交换从糖,激素,RNA到各种蛋白质等营养物质的所有类型的分子。不幸的是,它们也被植物病毒劫持,使它们从细胞间传播,然后在整个植物体系中传播。它们在植物生物学中的核心地位使得理解其生理机制,尤其是将其功能与其结构联系起来至关重要。在过去的50年中,电子显微镜观察家们已经观察到了这些现象,并试图用超微结构来表征它们。他们为已知的这些毛孔奠定了基础(Tilney等人,1991; Ding等人,1992; Oparka和Roberts,2001; Nicolas等人, et al。,2017a)。
尽管三维电子显微镜(3D-EM)爆炸,PD超微结构仍然不支持这种技术。第一个技术难点是在尽可能接近原生状态的情况下处理它们。其次,由于染色/固定试剂穿透率差,其体积增大,含水量高以及存在酸性液泡,植物样品显示自己难以加工。最重要的是,它们在细胞壁上的独特位置和它们的纳米尺寸使得难以方便地染色以便看到这些孔隙的内部运作。
这里我们详细描述Nicolas et al。(2017b)中使用的协议,对PD进行细节化处理,并生成高分辨率的X线断层图。
【背景】高压冻结(HPF)依赖于样品中存在的水的玻璃化。通过以足够高的冷冻速度(10 ...
|
|
Separation of Plant 6-Phosphogluconate Dehydrogenase (6PGDH) Isoforms by Non-denaturing Gel Electrophoresis
|
Author:
Date:
2017-07-20
[Abstract] 6-Phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) catalyzes the third and irreversible reaction of the pentose phosphate pathway (PPP). It carries out the oxidative decarboxylation of the 6-phosphogluconate to yield ribulose-5-phosphate, carbon dioxide and NADPH. In higher plants, 6PGDH has several subcellular localizations including cytosol, chloroplast, mitochondria and peroxisomes (Corpas et al., 1998; Krepinsky et al., 2001; Mateos et al., 2009; Fernández-Fernández and Corpas, 2016; Hölscher et al., 2016). Using Arabidopsis thaliana as ...
[摘要] 6-磷酸葡萄糖酸脱氢酶(6PGDH; EC 1.1.1.44)催化戊糖磷酸途径(PPP)的第三次和不可逆反应。它进行6-磷酸葡萄糖酸盐的氧化脱羧,得到核酮糖-5-磷酸,二氧化碳和NADPH。在高等植物中,6PGDH具有几种亚细胞定位,包括细胞质,叶绿体,线粒体和过氧化物酶体(Corpas et al。,1998; Krepinsky等人,2001; Mateos et al。,2009;Fernández-Fernándezand Corpas,2016;Hölscher等人,2016)。使用拟南芥作为植物模型和甜椒(Capsicum annuum L.)作为具有农业兴趣的植物的水果,该方案说明如何制备植物提取物用于分离通过在6%聚丙烯酰胺非变性凝胶上电泳可能的6PGDH同种型。因此,该方法允许检测在拟南芥幼苗中的三种6PGDH同种型和甜椒果实中的两种6PGDH同种型。 【背景】非变性凝胶电泳是一种强大的技术,可以分离天然蛋白质。 它们的移动性取决于蛋白质的大小,形状和净电荷。 在这些分析条件下,蛋白质保留了其活性,并结合特定的染色方法,可以分离潜在同种型的存在。 在超氧化物歧化酶家族的情况下,广泛应用这种方法。 然而,据我们所知,没有多少论文分析植物组织中6PGDH活性的不同同工型的存在(Corpas等人,1998; Mateos等人。 ,2009)。 ...
|
|